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Abstract. Verification of software security properties, when conducted at the bi-
nary code level, is a difficult and cumbersome task. This paper is focused on the
reverse engineering task that needs to be performed prior to any thorough analysis.
A previous line of work has been dedicated to the identification of cryptographic
primitives. Relying on the techniques that have been proposed, we devise a semi-
automated solution to identify modes of operation. Our solution produces a concise
representation of the data transfers occurring within a cryptographic scheme. In-
spired by program slicing techniques, we extract from a dynamic data flow a slice
defined as the smallest subgraph that is distance preserving for the set of crypto-
graphic parameters. We apply our solution to several modes of operation including
CBC, CTR, HMAC and OCB. For each of them, we successfully obtain a complete
and readable representation. Moreover, we show with an example that our solution
can be applied on non standard schemes to quickly discover security flaw.
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1 Introduction

1.1 Problem Statement

Modes of operation are critical from a security perspective, since they have to guarantee
the confidentiality, the integrity and the authenticity of sensitive data. However, they are
subtle to securely devise and implement and they are subject to many security vulner-
abilities. For instance, Katz and Schneier described an attack on OpenPGP which was
applicable to many other e-mail encryption protocols [18]. Using a chosen-ciphertext at-
tack on the Cipher Feedback (CFB) mode of operation, they were able to decrypt any
message without recovering the secret key. Such attacks have been implemented in prac-
tice [17]. It is also well-known that the padding used in modes of operation is highly
sensitive. Bad paddings have led to devastating attacks on many IETF standards [36] by
Vaudenay. A practical attack has been successfully implemented using timing information
[11]. Later, Paterson described many such attacks by carefully studying the interplay be-
tween modes of operation and various security protocols against TLS [29, 2, 30], against
IPsec [14] and against SSH [1, 31].

Therefore, to ensure that the security properties provided by modes of operation are
truly effective, security experts have to analyze their design and their implementations.
When the source code is not available, this analysis needs to be conducted at the binary
level. For instance, in black box security audits, security experts are limited to publicly



available information about the target. The objective of such audits is to simulate real-
world scenarios. Unfortunately, even with a good understanding of the machine language,
binary code analysis is still a difficult and time consuming task mostly due to the lack
of high level structure. It would be highly beneficial for security analysts if some parts of
the analysis could be automated. In particular, before digging into the details of padding
verification or before looking for possible side channels, analysts have to identify the mode
of operation and to locate its main components. In this paper we propose a solution to
facilitate this first step.

1.2 Related Work

To the best of our knowledge the only previous work to address the problem of find-
ing modes of operation in binary code, is CipherXRay [21]. CipherXRay is based on the
avalanche effect of cryptographic functions. It identifies memory buffers that are highly
dependent on one another. Specific dependencies patterns are proposed to distinguish
some modes of operation. The problem of identifying modes of operation can be related
to wider research fields such as generic algorithm identification and more generally bi-
nary analysis. Algorithm identification has been studied in the past few years for various
reasons ranging from intellectual property protection to malware analysis and to vul-
nerability discovery. Identification techniques can be classified according to which code
abstraction(s) they use to represent and compare binary code. The main abstractions are:
bytes value [16], instruction mnemonics [33], Control Flow Graph (CFG) [9], program de-
pendence graphs [27] and observations of runtime behavior [4]. One of the most recent
result in that domain is Rendezvous [19] that relies on several abstractions: data constant,
instruction mnemonics and CFG subgraphs.

In the case of modes of operation, it seems interesting to devise a specific solution.
In fact, symmetric cryptographic algorithms share common characteristics. For instance,
their implementations try to avoid conditional statements as much as possible due to per-
formance and security considerations (typically to resist timing attacks). By taking them
into account, a dedicated identification method will have a better efficiency and produce
more relevant results. A previous line of work, dealing with primitive identification, pro-
vides a good starting point. The main primitive identification techniques are presented
along with their advantages and drawbacks in Section 4.

1.3 Solution Overview

We choose to rely on the Data Flow Graph (DFG) to identify modes of operation. Modes
of operation specify how cryptographic primitives are applied on data to achieve security
properties. Thus, the data dependencies between the cryptographic primitives and, more
generally, their organization in the data flow, are essential to identify modes of operation.
We present our data flow model and how it can be obtained from a program execution in
Section 3.

A classical approach would be to search for distinctive data flow patterns using au-
tomated pattern matching techniques [12]. However, this approach lacks flexibility and
robustness. It is ineffective against modes of operation that have been modified or that
have never been encountered before. Besides, these techniques often produce fully pro-
cessed results that may be hard to seize by human analysts if they want to continue the
analysis manually. Instead of using signatures to identify modes of operation, we chose



to produce a synthetic representation of the data transfers occurring between the crypto-
graphic primitives. The interpretation of the synthetic representation is left to the human
analyst. This solution seems ideal to bridge the gap between automated processing and
manual analysis. Furthermore, human interpretation is much more flexible than any au-
tomated pattern matching techniques. This synthetic representation, called a slice, must
contain enough information to accurately identify modes of operation and, at the same
time, must be easily readable by a human analyst. A slice is defined in Section 5 as the
smallest subgraph of the DFG that is distance preserving for the set of cryptographic
parameters. A practical heuristic to extract a slice from a DFG is described in Section 5.
Experimental results are presented in Section 6. Finally, three use cases are detailed in
Section 7: the first one is about OCB an authenticated encryption mode, the second one
deals with an uncommon use of a cryptographic primitive as part of an IV-replacement
attack and the third one is about and instant messaging application that uses a custom
encryption scheme. In summary, this paper makes the following contributions:

– We propose to facilitate the analysis of modes of operation by computing a represen-
tation that summarizes the data dependencies between the cryptographic primitives.

– We give a formal definition for this representation and we propose a practical al-
gorithm to compute it. We discuss why this definition is a good tradeoff between
completeness and readability.

– We present experimental results obtained for several modes of operation including
CBC, CTR, HMAC and OCB on well-known cryptographic libraries.

2 Background on Modes of Operation

In this section, we review the main modes of operations that are used in this paper: CBC,
IGE, CTR, HMAC and OCB. In cryptography, modes of operation rely on primitives
of fixed input-length to provide security properties such as confidentiality, integrity and
authentication for arbitrarily large messages.

CBC. The Cipher Block Chaining (CBC) mode of operation is one of the most used
chaining mode. It is used to encrypt large messages using a block cipher. The idea consists
in randomizing the input of the block cipher using a random value. The first block is
randomized using an initialization vector, while block M [i] is randomized using block
C[i − 1]. To encrypt a message M , it is split into blocks M [i], the size of which is equal
to the input length of the block cipher. If the length of the message is not a multiple of
the block size, the message is padded. The most used padding scheme simply consists in
adding a bit 1 and as many bits set to 0 as needed. We choose C[0] := IV uniformly and
iterately compute C[i] := Ek(M [i]⊕C[i− 1]). This makes the scheme non-parallelizable,
but it has the advantage of being self-synchronizing: an error on one block infect only two
blocks. The decryption is parallelizable and M [i] := C[i− 1]⊕Dk(C[i]).

IGE. The Infinite Garble Extension (IGE) mode is used to encrypt large messages using
a block cipher. It is practically never used. It has the property to indefinitely propagate
forward errors. The message is split in the same way as in the CBC mode and C[i] =
Ek(M [i]⊕C[i− 1])⊕M [i− 1]. The decrypted message is given by: M [i] = Dk(M [i− 1]⊕
C[i])⊕ C[i− 1].



CTR. The counter mode of operation consists in viewing the block-cipher as a pseudo-
random permutation, meaning that the output bitstrings are indistinguishable from uni-
form bitstring up to the birthday paradox. Consequently, the encryption is a one-time
pad with the output bitstring. To encrypt a message M , we first split it in the same way
as in the CBC mode and C[0] = ctr uniformly chosen and C[i] = M [i]⊕ Ek(ctr + i). To
decrypt, we just output M [i] := C[i] ⊕ Ek(C[0] + i) [6]. Thus, the decryption is exactly
the same as the encryption. Moreover this mode is parallelizable.

OCB. The Offset Codebook Mode (OCB) has been defined by Rogaway [32]. It is an
authenticated encryption mode of operation. It ensures confidentiality and authentication
through a single pass over the message. The idea consists in XORing a random mask Z[i]
over the plaintext M [i] and on the ciphertext: C[i] := Ek(M [i]⊕ Z[i])⊕ Z[i]. The mask
evolves between each call based on a linear relation Z[i] := γi ·L⊕R, where L := Ek(0n)
and R := Ek(N ⊕ L) and N is a random nonce and the multiplication is performed
in some finite field of 2128 elements. There is a much more efficient way of computing
Z[i] from Z[i − 1] but we do not need such details. The final block is the encryption
of the checksum, that is the XOR of all plaintext blocks Checksum := ⊕m

i=1M [i]: T :=
Ek(Checksum⊕Z[m]). Further in the text we describe a more precise version since there
is some technicalities in order to make a ciphertext stealing mode, so that the output
length of the ciphertext part is as long as the plaintext.

HMAC. It was defined by Bellare, Canetti and Krawczyk in 1995 and it has been ex-
tensively used in many RFCs [5] since. The Merkle-Damg̊ard construction allows to hash
arbitrary length messages using a fixed input-length function, called the compression func-
tion. The Merkle-Dang̊ard mode of operation has some weaknesses to built a Message
Authentication Code (MAC) from such construction. The idea to avoid length extension
attack consists in hashing the output with another key and it has also been described as
the envelop method: H(k1‖M‖k2). HMAC can be defined for a hashing function H such
as MD5 or SHA-1 and simply outputs: HMACk(M) = H(k⊕opad‖H(k⊕ipad‖M)). We
will use ‖ in order to denote the concatenation of two bitstrings.

3 Data Flow

In this section we describe our data flow model and explain how it can be computed.
As mentioned in the introduction, symmetric cryptographic algorithms try to avoid con-
ditional statements as much as possible. Apart from the number of iterations over the
message blocks, we do not expect the control flow to change significantly from one exe-
cution to one another. To take advantage of this observation we assume that the code to
be analyzed is a sequence of instructions that is executed from the first to the last. This
hypothesis greatly simplifies the data flow computation. Straight line code can be easily
obtained in practice by recording a particular execution.

3.1 Data Flow Model

The data flow is represented by a directed graph. A vertex corresponds to an operation,
and an edge to a data dependency between two operations. An operation depends on its
operand(s). An input variable or a constant has no dependency. A memory access does



not depend on its address but only on the value it reads or writes. Let us consider the
following x86 assembly code snippet:

mov eax, [ebp + 8]

mov ebx, [ebp + 16]

Taking load-address dependencies into account results in eax and ebx being connected
through ebp. But as far as we know, eax and ebx may be perfectly independent (despite
the fact that they are stored side by side). In the end, there is a risk that everything
becomes interconnected through the stack pointer (at least when arguments are passed
on the stack). Thus, we discard this type of dependency. In our model, a memory read
depends only on the last value that was written at its address (if there is any, otherwise it
is considered as an input value). This is essential to track values as they are written and
read from memory. However, to build these dependencies, one has to find which memory
accesses are performed at the same address. This issue is discussed in Section 3.2. In
our data flow model we do not consider implicit dependencies. An example of implicit
dependency is illustrated in the following code line:

for (y = 0; y < x; y++);

The final value of y is equal to the value of x, yet there is no direct assignment from
x to y. This is an implicit dependency. As explained in the introduction there should be
almost no conditional statements on cryptographic data. Thus, for simplicity we ignore
implicit dependencies. Finally, it goes without saying that if the result of an operation is
constant it will not depend on its operands. A typical example in x86 code is:

xor eax, eax

3.2 Concrete Memory Addresses

To obtain correct load-value dependencies we must be able to compare the address of
memory accesses. It can be done either statically or dynamically.

Static Approach. Given two addresses, the goal is to over-approximate their difference.
That is to say, to find a set that contains all the possible values that their difference
could take. If this set is equal to the zero singleton, the two addresses are equal. If it does
not contain the zero value, they are different. Otherwise, it is impossible to conclude.
Thus, it is important to find the smallest over-approximation possible. One of the most
advanced techniques for over-approximating memory addresses in binary code is Value
Set Analysis (VSA) [3]. In our case, due to the straight line hypothesis, this technique
can be greatly simplified.

One important design principle was to limit the analysis to a code window. In fact,
we already know, where modes of operation are located in the program (code regions
surrounding the cryptographic primitives call sites). Besides, applying analysis (such as
VSA) to the whole program will dramatically increase the complexity of our solution
without providing any guarantee on the information we will retrieve from it. However, lack
of context information greatly reduces the efficiency of static address over-approximations.
In fact, modes of operation manipulate several data buffers (at least plaintext, ciphertext,



key and nonce), the address of which is usually defined outside of the analysis window.
Hence, whatever method is used, no good over-approximation can be computed for these
addresses. Since these buffers are accessed for mixed reads and writes, aliasing issues arise.
For instance, because we cannot decide if the address of the ciphertext buffer is different
from the address of the key, any write access to the ciphertext buffer might also overwrite
the key. It is unclear what should be the dependencies of the next read access to the key.
A first possibility will be to consider that it does not have dependency. But in that case,
the DFG will not reflect that, for instance, two consecutive cipher executions use the
same key. A second possibility will be to consider both dependencies: one to ciphertext
and one to previous key value. However, the ciphertext dependency is highly improbable
and taking it into account can be misleading while interpreting the DFG.

Dynamic Approach. In order to be context sensitive without needing to analyze the
whole program, we use concrete memory addresses. The resulting DFG reflects the partic-
ular execution, where the concrete memory addresses were recorded, and not necessarily
the generic behavior of the program. However, the generality loss is not a big concern since
we do not expect many addresses to be dependent on input values. A typical example of
an address that depends on an input value is a substitution box. But implementations of
modes of operation should be free of any substitution box access. Here again, the argu-
ment is that any complex transformation occurring inside the code of the mode can be
seen as a distinct cryptographic primitive and be dealt with separately.

3.3 Filtering False Dependencies

It is not because two vertices are connected by path in the DFG, that one necessarily
depends on the other. In the example of Figure 1, there is a path from A to C, and yet
the value of C is independent of the value of A. The combination of several instructions
along a path can nullify the influence of a variable. To measure at the bit granularity the
influence of a vertex v ∈ V on the rest of the graph we use a mask Mv : V 7→ {0, 1}n
(V denotes the set of vertices). If the ith bit of Mv(u) is a 0, it means that the ith bit
of u is not influenced by v. Conversely, if is is a 1, it means that the ith bit of u may be
influenced by v. To compute Mv, we start with Mv(v) = 111...1 and we propagate the
value along the edges. For each new vertices, we update the mask value depending on the
nature of its operation and the over-approximation that can be obtained for its operands.
In Figure 1, MA is given in red. MA(C) = 0, thus, the path from A to C should not be
considered as a true dependency.

4 Identification of the Primitives and the Parameters

As a preliminary condition, the parameters and the code of the cryptographic primitives
need to be identified and located inside the DFG. With this last requirement, concerning
the code of the primitive, our goal is to be able to dissociate the data flow of the primitive
from the external data flow of the mode of operation. Since we are only interested in the
data connections happening at the mode level, we must be able to exclude the internal
data flow of the primitive from our analysis.
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Fig. 1. In this DFG, C depends on B but not on A. MA is given in red.

4.1 Existing Techniques

Cryptographic primitive identification has already been studied and practical solutions
have been proposed. A first solution, described in [15] and [10], is based on the unique
relationship that exists between the input and the output values of a cryptographic al-
gorithm. If the data manipulated by a program fits that relationship, then we have not
only identified the algorithm but also its parameters. However this solution suffers from a
high combinatorial complexity. In fact, no good solution has been proposed to aggregate
registers and memory accesses together in order to obtain parameters than can be test
against standard implementations. CipherXRay (already mentioned in the introduction)
is a second solution. It takes advantage of the avalanche effect of cryptographic functions.
According to this effect, each byte of the input is expected to influence all the bytes of
the output. CipherXRay searches for couples of memory buffers (continuous memory lo-
cation accessed within a code fragment) that are subject to the avalanche effect. A third
solution, presented in [20], is relying on DFG to build signatures for cryptographic algo-
rithms. The DFG is first normalized using code rewrite mechanisms and then compared
to the signatures of a database using a subgraph isomorphism algorithm. Signatures are a
distinctive subgraphs. Parameter of cryptographic primitives are automatically identified
as part of the signature boundary.

4.2 Selected Technique: DFG Signatures

We choose to rely on DFG signatures to retrieve cryptographic code and cryptographic
parameters. The DFG model used in our method for mode identification is similar to the
one that is used for primitive identification. Thus, it will only have to be created once
for both methods. Moreover, this method has proven to be fast (execution time does not
exceed a couple of seconds), efficient for non obfuscated programs and it does not require
heavy instrumentation. And most of all, since it is based on DFG isomorphism, it tells
very precisely which vertices and edges are part of the primitive and which ones are part of
the mode. Despite the fact that primitive detection is not directly addressed by our work,
it is critical for the success of our method. In Appendix A, we describe two problems
that may greatly reduce the usability of the results for mode identification: parameter
interdependence and parasitic detection.



5 Slicing

As explained in the introduction, to make it possible for a human analyst to interpret
the data flow easily, it needs to be simplified. To this end, we propose to extract parts of
the data flow that are connected to the cryptographic parameters. Described as such, this
step can be seen as a program slicing process. As in program slicing, our goal is to extract
parts of the program that are affected by or have an effect on points of interest (which are,
in our case, the cryptographic parameters). But unlike the usual definitions of program
slicing [35], we do not impose the slice to maintain semantics of the original program with
respect to the points of interest. In fact, we favor readability over semantic equivalence.
Thus, not every part of the data flow that is connected with the cryptographic parameters,
is transcribed in the extracted graph. Because of the proximity to the program slicing
domain, we borrow the terminology and call the extracted graph a slice. This section is
structured as follow: first we give a formal definition of a slice; then we justify why this
definition is a good compromise between completeness and readability; finally we describe
a practical algorithm to compute an approximated slice.

5.1 Problem Formalization

Given a DFG D = (VD, ED) and a set of cryptographic parameters P ⊂ VD, a slice S =
(VS , ES) is the smallest subgraph of D such that P ⊂ VS and: ∀(u, v) ∈ P 2, dstD(u, v) =
dstS(u, v) (where dstD and dstS denotes respectively the distance in D and S). We define
the distance between two vertices as the number of edges on the shortest undirected path.

5.2 Completeness-Readability Tradeoff

Completeness. A slice is said to be complete if it contains enough information to identify
the mode of operation. The completeness is due to the distance preserving property. If
two parameters are connected in the DFG, then they will also be connected in the slice. A
first naive approach would be to consider a less generic definition where the slice is made
only of predefined connections (instead of generic undirected paths) between subsets of
cryptographic parameters. For instance, based on the CBC mode, it could be tempting to
only extract the smallest directed path from an output parameter to an input parameter
(chaining between two executions of the block cipher) and the lowest common ancestor
between two input parameters (same key for two executions of the block cipher). However,
there is a risk for this list of predefined connections to be incomplete and to become more
and more complex as new types of connections are added. For instance, let us consider
the simple construct to make a block cipher tweakable: Ek(M ⊕ h(T )) ⊕ h(T ) described
in [26]. Part of the DFG for this construct is given in Figure 2. None of the connections
previously mentioned for the CBC mode can describe the path between the input and
the output of the block cipher in that case. To obtain complete slices without a priori
knowledge of the types of connections that may be encountered, we consider undirected
paths between every pair of parameters.

So far we have justified why the proposed definition is necessary to obtain complete
slices with a large variety of modes of operation. Unfortunately, due to the minimality
property, this definition does not guarantee the slice to always be complete. For instance,
if one is interested in a particular path between two parameters, only the smallest is
guaranteed to be reported. In the next section, this issue is illustrated by an example
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Fig. 2. DFG of a possible construct to obtained a tweakable block cipher from a block cipher.
The connection between the input and the output is neither a directed path nor a lowest common
ancestor

and a possible workaround is mentioned. In practice, as showed in Section 6 and 7, this
definition has given good results.

Readability. A slice is said to be readable, if it does not contain significantly more infor-
mation than what is strictly required to identify the mode of operation. The readability
is ensured by the minimality property. It guarantees that the slice is free of irrelevant
elements, that is to say, vertices or edges that are not connected to any cryptographic
parameters.

However, the minimality property may also cause some perfectly relevant elements
to be discarded. In fact, if they are not located on the shortest path between a pair of
cryptographic parameters, they will not be included in the slice. This scenario is illustrated
by an example in Figure 3. On the left there is a possible data flow of a CTR mode and
on the right its corresponding slice. The counter is implemented using two variables, as
it could be the case for a 128-bit counter on 64-bit architecture. For a large majority of
executions, including the one used to build the data flow of the example, only the least
significant part is being incremented. Of the two existing paths between the input of the
block cipher, only the shortest is included in the slice. Thus, the information about the
addition, which is useful to identify the CTR mode, is lost.

enci enci+1

ctr2 1ctr1

+

enci enci+1

ctr2
Slicing

P

Fig. 3. DFG of a CTR implementation and its corresponding slice. The counter is implemented
using two variables: ctr1 (resp. ctr2) is the least significant part (resp. most significant part).

Including any paths and not only the shortest one, is not a possible solution to this
problem. In fact for some parameters, there are a lot of paths that are strictly equivalent.



For instance, the AES128 round key buffer is made of 44 32-bit words. Thus, there would
be 44 paths for each pair of encryptions sharing the same round key buffer. To avoid
redundant elements (representing the same information several times) we stick with the
original slice definition. A possible workaround for the example of Figure 3 is to split
the plaintext of the block cipher into two parts. Since the two parts are now seen as
independent parameters, both paths will be included in the slice (that will be equivalent
to the original data flow). Obviously, this solution requires a priori knowledge of the mode
that is going to be identified. As such, it cannot be used directly in a first approach, but
can be used later during a refinement phase.

5.3 Practical Greedy Algorithm

Finding a minimum distance preserving subgraph is a difficult task. A basic idea is to
search for a shortest path for every pair of P 2 and to take their union. Since the path
length is measured as the number of edges, a Breadth First Search (BFS) algorithm can
be used to compute the shortest path between two vertices. For a sparse graph with a
number of edges linear to the number of vertices (as it is the case in our DFG model)
the complexity of the BFS algorithm is linear to the number of vertices. Thus, the overall
complexity of this simplistic algorithm is O(|VD|.|P |2). However, the resulting subgraph
is not necessarily the smallest. If there are several smallest paths for a pair of vertices,
the size of the union may depend on which one is chosen. It is illustrated by an example
in Figure 4. We want to find a slice for the data flow on the left assuming a set of
parameters P = {enci, encj , enck}. By using the algorithm we just described, we may
obtain the slice given on the top right which is equal to the union of (enci, key2, encj),
(enci, key1, enck) and (encj , key2, enck). However, the slice given on the bottom right
is smaller. This problem is common in practice. In fact, a cryptographic parameter is
almost always defined by a set of vertices. For instance on a 32-bit architecture, a 128-bit
plaintext is usually split into four 32-bit fragments. One shortest path for each of these
fragments is to be expected. Back to the example of Figure 4, key1 and key2 could be
two fragments of a same key parameter.

key2 key1

enci encj enck

key2 key1

enci encj enck

key1

enci encj enck

Slicing

P

Fig. 4. A data flow with two possible distance preserving subgraphs

In the field of graph spanner, Coppersmith et al. [13] describe an approximate algo-
rithm to compute pair-wise preservers. Given a graph D = (V,E) and a set P 2 of pairs of
vertices in P , a pair-wise preserver of D with respect to P is a subgraph D′ = (V,E′) that
is distance preserving for the elements of P . Their algorithm produces pair-wise preserver



the size of which is bounded by O(|V | +
√
|V ||P 2|). The idea behind their algorithm is

to modify slightly the weight of the edges to enforce the uniqueness of the shortest paths.
If this upper bound is relevant from the graph spanner perspective, in our case it does
not provide any guarantee at all. The DFG is already sparse. Thus, all its subgraphs are
under that bound. Apart from this work, we have not been able to find any work or study
addressing directly our problem.

An exact solution can be computed using the following algorithm. First, search for
the set of shortest paths for every pair of parameters. Then, pick one path from each set,
such that their union is minimum. This algorithms suffers from a high complexity. The
number of shortest paths can be exponential to the number of vertices. Evaluating every
possible selection of paths to find the smallest union has also an exponential complexity.

To reduce its complexity and make it tractable in practice, we make the following
modifications. First, we limit to a fixed amount the number of paths returned by the BFS
shortest path computation. Second, we used a greedy algorithm to find the set of paths
with the smallest union. Iteratively, for each pair of P 2, we insert its shortest path that
shares the largest number of edges with the current selection. A pseudo-code for this new
algorithm, called the greedy algorithm, is given in Algorithm 1.

Algorithm 1 Greedy Algorithm

for all pairs (u, v) of P 2 do
pathu,v = minPath(u, v)

end for
Initialize S as an empty graph
repeat

pick an unprocessed pair (u, v) such that |pathu,v| is minimal
pick a path p ∈ pathu,v such that |VS ∪ p| is minimal
add p to S and mark (u, v) as processed

until all pairs of P 2 have been processed
return S

The complexity of the greedy algorithm is O(|VD|.|P 2|). Although there is no theo-
retical guarantee that the returned subgraph would be the smallest, it is almost always
the case in practice. A list of remarks is given as follow to justify this observation. First,
the fixed upper bound on the number of shortest paths is almost never reached. In fact,
as previously said, when several shortest paths are found it is often due to parameters
fragmentation. Because fragments are rarely mix together outside of the cryptographic
primitives, the number of shortest paths is almost always linear to the number of frag-
ments. Second, not every pair of parameters has several shortest paths. Thus, the greedy
selection mechanism starts with a non empty set of edges. As a consequence, the first
path has not been chosen randomly and more generally we think it helps to stabilize the
result. Finally, some sets of shortest paths are disjoints. For instance, for a usual mode
of operation, the plaintext path will not intersect the key path. It mitigates the effect of
the selection algorithm on the solution.



6 Experimental Evaluation

From an implementation perspective, we divided our solution into two parts. The first one,
collects an execution trace of a program, using the PIN [28] framework. This execution
trace contains the sequence of executed instructions along with the concrete memory
addresses. The computation of the DFG and the extraction of the slice are performed
off-line, in the second part. Results are printed in the DOT graph description language.

This section describes the experiments we conducted to evaluate our method. The
data set is made of cryptographic implementations of some well-known cryptographic
libraries.

6.1 Methodology

To save some space, we do not detail every slice that was obtained. Instead, to assess
their usability by a human analyst, we provide measure of their completeness and their
readability. These two notions are defined with respect to what should be an optimal data
flow pattern in order to identify the mode of operation. The slice is called S, Sopt is the
optimal pattern and Mcs is a function that returns, for a pair of graphs, its maximum
common subgraph. The completeness Cp and the readability Rd are defined as follows:

Cp(S) =
|Mcs(S, Sopt)|
|Sopt|

Rd(S) =
|Mcs(S, Sopt)|

|S|
Here, the size of a graph (denoted by |.|) is equal to its number of edges. If the slice is

equal to the optimal pattern then both the completeness and the readability are equal to
1. During our experiments, the completeness and the readability were computed manually.

We performed experiments for three modes of operation: CBC (encryption and de-
cryption), CTR and HMAC. We give in Figure 5 what we consider to be an optimal
pattern for each of these modes. In that representation, the * label may refer not only
to any vertices but also to any path that does not intersect the rest of the graph. Some
edges have a label to specify to which parameter of the cryptographic primitives they are
connected. These patterns contain only the minimal number of executions of the cryp-
tographic primitives to be recognizable. If the analysis window contains more, they will
need to be extended. A short explanation for each of these patterns is given as follows.

CBC. For both encryption and decryption, the pattern contains two executions of the
block cipher. In both cases, they have the same key parameter. For encryption, the input
of the second execution of the block cipher, depends on the output of the first. For
decryption, the input of the first execution an the output of the second have a common
descendant.

CTR. The pattern contains two executions of the encryption primitive. They have the
same key parameter and their input, both depends on the counter initial value.

HMAC. The pattern contains four executions of the compression function (two for each
execution of the hash function). The first message block for the inner and outer hash
function, are both dependent on the key. The second message block of the outer hash
function depends on the output of the inner hash function. The others edges are due
to the Merkle-Damg̊ard hash construction. The dashed edge marks the place where the
pattern would have to be extended if a larger code window were to be analyzed.
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Fig. 5. Optimal data flow pattern for CBC, CTR and HMAC modes of operation

6.2 Results

We evaluated our method against the following cryptographic libraries: Crypto++ [22],
LibTomCrypt [25], Nettle [23] and OpenSSL [24]. To be as close as possible to the reality,
we did not recompiled these libraries, but took them as they were distributed in their
respective Debian package. The CBC and CTR modes were tested with the AES and
XTEA block cipher (when available) and the HMAC was tested with the MD5 hash
function. For each scenario, we wrote a very simple program that calls the right library
function on a small amount of data. We expected the same kind of results on larger
programs. In fact, the analysis is limited to a small code window. For cryptographic
libraries, this code window is not going to change depending on the amount of code
surrounding it. Efficient heuristics that may be used to extract relevant code windows,
are presented in Section 7.

Table 1. Measures of the completeness Cp and the readability Rd

CBC CTR HMAC

Crypto++ 5.6.1 Cp = 1, Rd = 1 Cp = 1, Rd = 1 Cp = 1, Rd = 1
LibTomCrypt 1.17 Cp = 1, Rd = 1 Cp = 1, Rd = 1 Cp = 1, Rd = 1
Nettle 2.7.1 Cp = 1, Rd = 1 Cp = 1, Rd = 1 Cp = 1, Rd = 0.71
OpenSSL 1.0.1f Cp = 1, Rd = 1 Cp = 1, Rd = 1 Cp = 1, Rd = 0.83

The completeness and the readability measures are given in Table 1. The completeness
is always equal to one. It means that the slicing process has not missed any important con-
nection specified by the optimal pattern. The majority of the readability values are also
equal to one, meaning that the corresponding slices do not contain superfluous connec-
tions. However, smaller readability values were obtained for some HMAC implementations
(Nettle and OpenSSL). These slices contain a common ancestor between the last block of
the two executions of the hash function. After a thorough investigation, it appears that
this common ancestor is the size of a message block. In fact, by the specification k⊕opad

and k ⊕ ipad have the same size than a message block. Thus, the size of the messages
k ⊕ opad||H(k ⊕ ipad||m) and k ⊕ ipad||m both depend on the size of a message block.
Since the message padding includes the length of the message, it is perfectly legitimate for



the last block to depend on the size of a block. Nevertheless we count it as a superfluous
connection since it can be misleading for inexperienced analysts.

To conclude, our method have given promising results. In particular, every elements
necessary to identify the mode of operation were obtained and the percentage of super-
fluous elements was never overwhelming.

7 Detailed Uses Cases

In this section we detail three application scenarios. First, we apply our solution on
an OCB implementation to demonstrate that it can scale to more complex modes of
operation. Second, we show that our solution can be used to quickly identify a malicious
CBC implementation containing a backdoor. Finally, we confront our solution with an
instant messaging application, to illustrate how it can be used on larger programs.

7.1 Authenticated Encryption: OCB

There are three versions of OCB. This example is based on the implementation of LibTom-
Crypt which corresponds to the first version, described in [32]. The slice given in Figure
6, was obtained after encrypting a 34-byte message with AES OCB.

To justify why this slice correctly reflects the algorithm and to underline some of its
imprecisions we divide the graph into four parts. The first part, colored in blue at the top,
computes the first offset which is defined by the following expression: Ek(N ⊕ Ek(0n)),
where N denotes the nonce, Ek the encryption under the key k and 0n n bits set to 0.
The two AES executions and the XOR operation in between are visible in the graph. The
second part, colored in orange at the bottom left, encrypts the two first message blocks by
evaluating the expression: Ek(M [i]⊕Z[i])⊕Z[i], where M [i] is the ith message block and
Z[i] the ith offset (random mask). Here again the slice perfectly transcribes the algorithm
specification. The two message blocks correspond to the two LOAD vertices at the center
of the graph. The offset Z[i] is XORed two times, before and after the encryption. The
OR and PART1 8 operators are due to size changes from 32-bit to 8-bit variables and
conversely. The third part, colored in violet on the right, corresponds to the last block
encryption defined by: Ek(len(M)⊕L(−1)⊕Z[m])⊕M [m]. The last message block M [m]
does not appear in the graph. M [m] is read only once for the whole scheme. Thus, it does
not belong to any path between cryptographic parameters and it was not reported in the
slice. The last part, colored in green at the bottom right, computes the authentication
tag defined by: Ek(M [1]⊕ ...⊕M [m− 1]⊕ (C[m]||0∗)⊕ Y [m]⊕Z[m]), where C[m]||0∗ is
the last encrypted block padded with zeros and Y [m] = Ek(len(M)⊕L(−1)⊕Z[m]). As
previously said, the message used for this slice is 34-bytes long. Thus, the size of C[m] is
2 bytes. These two bytes are obviously not on any shortest path, since they involved an
additional XOR operation compared to Y [m]. With this remark in mind, the slice appears
to contain the right dependencies: the two message blocks, Y [m] and Z[m] are XORed
together and the result is encrypted. For brevity, we will not dig into how the different
offsets are generated. As far as we have conducted our analysis, no inconsistency between
the slice and the specifications has been found.

To conclude, our slicing model was able to capture most of the interesting connections
even though some are missing (the XOR with C[m]||0∗ for instance). Obviously the com-
plexity of this mode reduces the advantage of a graph representation for a human analyst.
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Fig. 6. Experimental slice obtained for the AES OCB implementation of the TomCrypt library
executed on a three block message

However, as demonstrated in the last paragraph, it is still possible to understand it with
the help of the specifications.

7.2 IV-Replacement Attack

Algorithm Substitution Attack (ASA) consists in replacing the original encryption algo-
rithm by a malicious one containing backdoor capabilities. There has been a renewed
attention in the last past years for ASA, as shown by recent publications in that domain
[8, 7]. Closed source implementations of symmetric cryptography are attractive targets
for ASA. Thus, while evaluating binary software, security experts could be interested
in detecting ASA. This example shows that our method can automatically discloses an
IV-replacement attack.
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An IV-substitution attack is a simple ASA that was first described in [8]. It can be
used against any encryption scheme that surfaces its IV, such as CBC or CTR. Two
keys are used: the legitimate encryption key k defined by the user and a second key k′

known only by the attacker. The IV is replaced by k encrypted under k′. Anyone with
the knowledge of k′ can decrypt the IV, recover k and finally decrypt the data.

For this experiment, we have implemented a very simple AES CBC encryption subject
to an IV-replacement attack. The encryption key k is also encrypted using AES. It is a
simplistic example, since in reality one will probably use public key cryptographic to
correctly conceal the encryption key k. To start the analysis, we located the AES key
schedule and the AES encryption, using primitive identification methods. The slice that
was returned by our method is given in Figure 7a. It is easy to recognize three CBC
patterns in the middle: encryption executions are chained by XOR operations. Notice
that encryptions depend on both the result of the key schedule and the key (LOAD labels
in the graph). It is perfectly correct since the first four round keys are equal to the key. The
key schedule is executed two times: one for each k and k′. The IV generation happens on
the top left corner: we noticed that the first AES encryption takes as a plaintext parameter
a value read form the memory that is later used as input by a key schedule execution.
This is the encryption key k. The IV-substitution pattern is thus clearly visible.



7.3 Instant Messaging Application

For simplicity reasons, every results provided so far were obtained on wrapper applica-
tions that just call few functions from cryptographic libraries. In this section, we apply
our solution on a much larger program: the Telegram client for Linux. Telegram is an in-
stant messaging service that uses a custom encryption scheme called MtProto [34]. Brief
specifications of this protocol can be found on editor’s website. Client applications are
available for several operating systems and they are all open source. Thus, it will be easy
to check the validity of our results.

To extract interesting code fragments for our analysis, we use three simple heuristics.
First, we looked for large basic blocks (more 40 instructions). Symmetric cryptography
algorithms have very few conditional statements resulting in large basic blocks. Second,
we filtered the basic blocks that had a low ratio of logical bitwise instructions. Finally, we
kept only functions that did not call any sub function and, of course, contained at least one
of the previously selected basic blocks. These three heuristics returned, for an execution
trace of nearly a billion dynamic instructions and more than 130000 basic blocks, only a
dozen of functions. Among them, we found AES (encryption and decryption), SHA1 and
MD5. The others are checksum or compression functions.

The slice we obtained for the encryption part of protocol is given in Figure 7b. It
covers the encryption of the first two blocks of a message. The IGE mode of operation
is perfectly recognizable.The two blocks of message (corresponding to the LOAD vertices
on the left), are XORed with their previous ciphertext block, encrypted and XORed with
their previous plaintext block.

8 Conclusion

In this paper we have presented an automated solution to produce synthetic representa-
tions of the principal data transfers occurring in modes of operation. A formal definition
ensures that this representation, called a slice, is both, sufficiently complete to reliably
identify the mode of operation and, easily readable to benefit from the flexibility of hu-
man interpretation. We have described how slices can be computed. First we generate
a dynamic DFG from an execution trace containing the executed instructions and the
concrete memory addresses. Then, we locate in the DFG, the code and the parameters
of the cryptographic primitives, using a signature-based identification technique. Finally,
we apply a greedy algorithm to find the smallest representation possible.

We have demonstrated with experimental results on CBC, CTR and HMAC that, in
practice, the slices produced by our method are complete and readable. In the last section,
we have described in details three application scenarios to illustrate the capability of our
solution. For the three scenarios, a complex mode of operation, a modified one with a
security flaw and a real world program, our method performed well. Security analysts can
take advantage of the results provided our solution, to quickly identify modes of operation
and to get a good understanding of their internal structure. As such it should be highly
profitable for black box audits and any other activities that require to reverse engineer
the binary code of mode of operation.
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A Primitive Identification Issues

Independent Parameters. It is clear that as the signature’s size increases, the harder
it will be to detect the signature. In fact, the normalization phase is not always able to
remove the variations that exist between the different implementations of a same algo-
rithm. Complete and precise signatures are putting more pressure on the normalization
phase and increases the number of false negative. Conversely, it might be tempting to
limit signatures to only one part of the algorithm (that is less subject to variation). But
in that case, the retrieved parameters will correspond to intermediate results or to al-
ready processed entries. It could be problematic if those parameters are dependent on
one another. In fact, searching connections between those parameters instead of the real
independent ones will cause irrelevant connections to be found, reducing the readability
of the slice and in some extreme cases even concealing other connections.

Parasitic Detection. Given a graph G we note Aut(G) its automorphism group. Let
us consider a signature graph S = (VS , ES) and a DFG D = (VD, ED). We assume
that f : VS 7→ VD is the edge preserving one-to-one function such that f(VS) is the
signature match we would like to detect. We call parasitic detections of f every subgraph
isomorphism of the form: g ◦ f ◦ h where h ∈ Aut(S) and g ∈ Aut(D′) with g|f(VS) 6= id
and D′ a subgraph of D containing f(VS).

Of course, in practice it is impossible to tell which detection is a correct matching of the
algorithm and which one is parasitic. Symmetries responsible for parasitic detection often
concerns input parameters since they lack operand constraints (they have no operand and
because they may have been produced by any operation, their label is left unspecified).
Consequently, input parameter identification is prone to false positives. The example
of Figure 8 illustrates how symmetries in the signature and in the DFG, can result in
incorrect parameter detections. This example is based on a simple toy cipher defined by:
C = S(M ⊕ k1)⊕ k2 where C is the ciphertext, S a public permutation implemented as
lookup table, M the plaintext and k1, k2 two keys.

Figure 8a represents what would be a typical signature for this cipher. We notice that
this signature has a non trivial automorphism. The image of M by the automorphism is k1
and vice versa. Thus, it is impossible with this signature to distinguish those two inputs.
A possible solution to break the signature symmetry, is to add additional constrains on
one of the parameters. We proposed an enhanced signature in Figure 8b. This signature
will operate under the assumption that the keys are accessed through the same pointer. It
has no symmetry any more. However, if we consider the DFG of Figure 8c, the enhanced
signature will still produce parasitic detections. In fact, the three input parameters are
read from the stack in a symmetric way. As a consequence there are two subgraphs which
are isomorphic to the signature, each of them with different vertices for M and k1. Hence,
again we are unable to dissociate the plaintext from the key.

This issue happens for real cryptographic algorithms such as AES for instance (the
first add round key is symmetric, thus it is hard to correctly dissociate the plaintext
from the round key). A possible solution is to filter incorrect parameters using the IO
relationship method described in Section 4.1.
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