
Anomaly Detection in Streams with Extreme Value Theory
Alban Siffer

Amossys, IRISA, Inria

alban.siffer@irisa.fr

Pierre-Alain Fouque

Univ. Rennes 1, IUF, IRISA

pierre-alain.fouque@inria.fr

Alexandre Termier

Univ. Rennes 1, Inria, IRISA

alexandre.termier@irisa.fr

Christine Largouet

AgroCampus, Inria, IRISA

christine.largouet@irisa.fr

ABSTRACT
Anomaly detection in time series has attracted considerable at-

tention due to its importance in many real-world applications in-

cluding intrusion detection, energy management and finance. Most

approaches for detecting outliers rely on either manually set thresh-

olds or assumptions on the distribution of data according to Chan-

dola, Banerjee and Kumar.

Here, we propose a new approach to detect outliers in streaming

univariate time series based on Extreme Value Theory that does

not require to hand-set thresholds and makes no assumption on

the distribution: the main parameter is only the risk, controlling

the number of false positives. Our approach can be used for outlier

detection, but more generally for automatically setting thresholds,

making it useful in wide number of situations. We also experiment

our algorithms on various real-world datasets which confirm its

soundness and efficiency.

CCS CONCEPTS
• Computing methodologies → Anomaly detection; • Math-
ematics of computing → Time series analysis; • Information
systems → Data stream mining;

KEYWORDS
Outliers in time series, Extreme Value Theory, Streaming

1 INTRODUCTION
Anomaly detection is an important research area in data mining.

Many types of anomalies, or outliers, are described in the litera-

ture [23]. One of the most fundamental type of anomalies are the

extreme values (maximum and minimum).

Many work have been proposed for solving this problem. How-

ever, they require some knowledge about the data: either they make

assumptions on the underlying distribution or they need manually

set thresholds.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

KDD ’17, August 13-17, 2017, Halifax, NS, Canada
© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-4887-4/17/08. . . $15.00

https://doi.org/10.1145/3097983.3098144

When the data is static, or is a stream coming from an extremely

controlled environment, such assumptions can safely be made. But

in the general case of streaming data from an open environment,

these assumptions are no longer true. They may fail in unexpected

cases.

The issue is that nowadays, more and more critical applications

rely on high throughput streaming numerical data like energy man-

agement [30], cyber-security [32] or finance [26]. For example, in

intrusion detection, some network attack techniques rely on inten-

sive scans of the network, which are characterized by an unusually

high number of SYN packets [32].

The main challenge is to learn “normality" in an ever chang-

ing environment and to automatically adapt the detection method

accordingly.

The problem of detecting extreme values in streams can be ex-

pressed as follows: Let (Xt)t ≥0 be a streaming time series of iid

observations. Can we set a threshold zq such that for any t ≥ 0,

the probability to observe Xt > zq is lower than q (for q as small

as desired) ?

To solve this problem, we use the statistical powerful tool of

Extreme Value Theory (EVT). This theory was developed to study the
law of extreme values in a distribution function after the following

dramatic event. In the night of January 31 to February 1 of the year

1953, a set of rare conditions occurred in the North Sea, leading to

a “perfect storm” scenario. On the coast of Netherlands, the waves

generated overwhelmed the dikes, causing extensive flooding. The

flooding led to the death of 1800+ people in the Netherlands alone.

In the dike case, Xt is the height of the waves, and zq is the height

of the dike.

In the aftermath of this disaster, scientists were tasked to deter-

mine a minimal dike height such that the probability for waves to

exceed this height is extremely low. Statisticians devised an elegant

theory for the study of such rare events [10]. One of the most ele-

gant result of EVT is that the distribution of the extreme values is

almost independent of the distribution of the data with a theorem

similar to the central limit theorem, for min,max instead of the

mean value.

The main contribution of this paper is to propose an approach

for outlier detection in high throughput streaming univariate and

unimodal time series. Thanks to EVT, our approach makes no dis-

tribution assumption on the data: it is thus a solution to “Research

Issue 6" for outlier detection in data streams as stated by Sadik

and Gruenwald [29] in SIGKDD Explorations 2014. We decline our

approach into two algorithms: SPOT for streaming data having any

stationary distribution, and DSPOT for streaming data that can be

https://doi.org/10.1145/3097983.3098144

subject to concept drift. Through detailed experiments on synthetic

and real data, we show that our approach is accurate for detecting

outliers, is computationally efficient, and for DSPOT reacts quickly

to any change in the stream. For instance, we decide to test our

algorithm on incoming streams without knowledge on their distri-

bution. We show that we detect very efficiently and accurately: (i)
network SYN attacks on a labeled data stream and (ii) peaks that
allows to take decision on stock market (quickly react for buying

or selling shares). Our experiments also confirm the EVT theory

with accuracy and fast convergence.

Analyzing streaming data require the computation of EVT to

be fast and resilient: as a secondary contribution, we propose two

improvements on the general method for solving the EVT problem,

that improve both its speed and its robustness. They are used in

our algorithms, but they are not specific to streaming data and can

immediately be applied to most algorithms using EVT.

2 RELATEDWORK
Classically, anomaly detectors have to highlight what will be con-

sidered as an anomaly, also called outlier. As we propose a statistical
method to find anomalies, we rely on the assumption given by Chan-

dola, Banerjee and Kumar in [13]: “Normal data instances occur

in high probability regions of a stochastic model, while anomalies

occur in the low probability regions of the stochastic model”.

A great deal of algorithms for static outlier detection are given in

the literature. The main approaches are distance based [7], nearest-

neighbor based [11] or clustering based [14] and are very well

detailed in [13]. Nonetheless, as mentioned in [31], most existing

outlier detection methods need to scan several times the data and/or

have high time complexity, thus they cannot be used in data streams.

In [28, 29], Sadik details the specificities of the stream environ-

ment and the hardships of outlier detection in this context. The

main constraints are the following: data cannot be scanned twice

and new concepts may keep evolving.

Many works which address the streaming case present distance

based algorithms for outlier detection (STORM [8], CORM [15],

DBOD-DS [28], attributes weighting [31]). These methods are able

to work on multidimensional streams with categorical features but

they need user defined thresholds which could be a real hindrance

in practice.

Current statistical approaches to perform outlier detection in

data stream suffer from the inherent problem, namely the distri-

bution assumption. In [6], Agarwal assumes a gaussian model to

detect anomalies in multidimensional arrays and recommends a

Box-Cox transformation if it is not the case. In [16], a more general

mixture model is presented by Eskin, based on a majority distribu-

tion and an anomaly one. However both models need to be learned,

so data of each distribution are required. In [24], the authors use

a probabilist threshold ϵ to discriminate normal or abnormal data

(observations with probability lower than ϵ are anomalies), but

its possible values are lower-bounded by 1/(k + 1) where k is the

number of training elements. Thus it needs a huge training sample

if we want a very low false positive rate.

In our work, we do not assume the distribution of the value we

monitor but we rely on powerful theoretical results to estimate

accurately low probability areas and then discriminate outliers.

With our single parameter algorithms, we are able to detect outliers

in both stationary and drifting contexts.

3 BACKGROUND
In this section we describe the theoretical background of the Ex-

treme Value Theory (EVT). We try to explain the main results and

how they could be used to address our problem (the reader could

refer to the rich reference of Beirlant et al. [10] for more details).

This part is not a prerequisite to understand the purpose of our

algorithm but it gathers some elements to precise its fundamental

basis.

Many techniques allow the scientist to find statistical thresh-

olds (quantiles). For instance, we can compute them empirically

or assume a distribution. However data do not necessarily follow

well-known distributions (Gaussian, uniform, exponential etc.) so

the model step (the choice of the distribution) could be hard, even

inappropriate. Moreover, if we want to predict extreme events, like
rare or unprecedented events (as tidal waves), the empirical method

will not give accurate estimation (an unprecedented event would

have a probability equal to zero). The extreme value theory ad-

dresses these problems by inferring the distribution of the extreme

events we might monitor, without strong hypothesis on the original

distribution.

Mathematically, X is a random variable and F its cumulative

distribution function: F (x) = P(X ≤ x). We denote by F̄ the “tail" of

the distribution: F̄ (x) = 1 − F (x) = P(X > x). We use Xi to denote

both random variables and their outcomes, however the context

will precise their meanings. For a random variable X and a given

probability q we note zq its quantile at level 1 − q, i.e. zq is the

smallest value s.t. P(X ≤ zq) ≥ 1 − q i.e. P(X > zq) < q.

3.1 Extreme value distributions
The goal of the extreme value theory is to find the law of extreme

events (e.g. the law of the daily maximum of temperature, or the

law of the monthly maximal tide height). A beautiful result from

Fisher, Tippett [18] and later Gnedenko [20] states that, under a

weak condition, these extreme events have the same kind of distri-

bution, regardless of the original one. For instance the maximum

of temperatures or tide heights have more or less the same distri-

bution whereas the distributions of the temperatures and the tide

heights are not likely to be the same. This extreme laws are called

the Extreme Value Distributions (EVD) and they have the following

form :

Gγ : x 7→ exp

(
− (1 + γx)

− 1

γ
)
, γ ∈ R, 1 + γx > 0.

All the extremes of common standard distributions follow such a

distribution and the extreme value index γ depends on this original

law. For example, if X1, . . .Xn are n iid variables (e.g. gaussian

N(0, 1)) thenMn = max1≤i≤n Xi is likely to follow an EVD which

extreme value index γ is given by the initial distribution (for the

Gaussian distribution γ = 0).

This result may seem very counterintuitive but we can give

some elements to catch the idea. Indeed, we can easily imagine that

for most distributions the probabilities decrease when events are

extreme, ie P(X > x) → 0 when x increases. The function F̄ (x) =
P(X > x) represents the tail of the distribution of X . Actually, there

2

are not many possible shapes for this tail andGγ tries to fit them.

The table 1 presents the three possible shapes of the tail and the link

with the extreme value index γ . It gives also an example of standard

distribution which follows each tail behavior. The parameter τ
represents the bound of the initial distribution, so it could be finite

(ex: uniform cdf) or infinite (ex: normal cdf). The figure 1 depicts

an example of the three behaviors.

Tail behavior (x → τ) Domain Example

Heavy tail, P(X > x) ≃ x
− 1

γ γ > 0 Frechet

Exponential tail, P(X > x) ≃ e−x γ = 0 Gamma

Bounded, P(X > x) =
x ≥τ

0 γ < 0 Uniform

Table 1: Relation between F and γ

0 1 2 3 4 5 6

x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ḡ
γ

γ = 1

γ = 0

γ = −0.8

Figure 1: Tail distribution Ḡγ according to γ

3.2 Power of EVT
This phenomenon allows us to accurately compute probabilities

without inferring the initial law that can be really complex. It “reg-

ularizes" the initial distribution. Indeed, the central limit theorem

states that the mean of n iid random variables converges in distri-

bution to a normal distribution. The EVT theorem states the same

result for the maximum.

F̄ = 1 − F
unknown

Ḡγ

Figure 2: EVD fit of an
unknown cdf

By fitting an EVD to the un-

known input distribution tail

(see figure 2), it is then possi-

ble to evaluate the probability

of potential extreme events. In

particular, from a given prob-

ability q it is possible to calcu-

late zq such that P(X > zq) <
q. To solve this problem, the

natural way will be to esti-

mate γ . Several estimates ex-

ist such as Hill’s estimate [22]

and Pickands’ estimate [27] but

they give good results only for certain tail behaviors. Its estima-

tion is hard and nowadays we do not know a general and efficient

method to compute it (i.e. for all γ ∈ R).
Another way exists to fit the tail of the distribution: the Peaks-

Over-Threshold (POT) approach.

3.3 Peaks-Over-Threshold (POT) approach
The Peaks-Over-Threshold (POT) approach relies on the Pickands-

Balkema-de Haan theorem [9, 27] (also called second theorem in EVT

in comparison to the initial result of Fisher, Tippett and Gnedenko)

given below.

Theorem 3.1 (Pickands-Balkema-de Haan). The cumulative
distribution function F ∈ Dγ

1 if and only if a function σ exists, for
all x ∈ R s .t . 1 + γx > 0:

F̄ (t + σ (t)x)

F̄ (t)
−→
t→τ
(1 + γx)

− 1

γ .

A clearer view of the theorem is the following:

F̄t (x) = P (X − t > x | X > t) ∼
t→τ

(
1 +

γx

σ (t)

)− 1

γ
.

This result shows that the excess over a threshold t , written
X − t , are likely to follow a Generalized Pareto Distribution (GPD)

with parameters γ ,σ . In fact, the GPD needs a third parameter, the

location µ, but it is null in our case. Rather than fitting an EVD to

the extreme values of X , the POT approach tries to fit a GPD to the

excesses X − t .
In the casewe get estimates γ̂ and σ̂ (ourmethodwill be described

in 3.4), the quantile can be computed through :

zq ≃ t +
σ̂

γ̂

((
qn

Nt

)−γ̂
− 1

)
, (1)

where t is a “high" threshold (details will be given in 4.3.3), q the

desired probability, n the total number of observations, Nt the

number of peaks i.e the number of Xi s.t. Xi > t .
Some classical methods can be used to perform the estimation

of γ and σ , as the Method of Moments (MOM) or the Probability

Weigted Moments (PWM) but they are less efficient and robust than

the maximum likelihood estimation [10] that we describe below.

3.4 Maximum likelihood estimation
3.4.1 Likelihood expression. The maximum likelihood estima-

tion remains a natural way to evaluate the parameters through

observations. If X1, . . .Xn are n independent realizations of the

random variable X which density (noted fθ) is parametrized by θ
(possibly a vector), the likelihood function is defined by:

L (X1, . . .Xn ;θ) =
n∏
i=1

fθ (Xi).

It represents joint density of these n observations. As X1, . . .

Xn are fixed in our context, we try to find the parameter θ such

that the likelihood is maximized. It means that we are looking for

the value of θ which makes our observations the most probable.

Practically, we work on the log-likelihood, so in our case (GPD fit)

we have to maximize :

logL(γ ,σ) = −Nt logσ −

(
1 +

1

γ

) Nt∑
i=1

log

(
1 +

γ

σ
Yi

)
,

1
It means that the extrema of the distribution of F converge in distribution to Gγ .

3

where Yi > 0 are the excesses of Xi over t (Yi = Xi − t for Xi > t).
Unfortunately, the optimization must be done numerically, imply-

ing the classical numerical issues. To perform it, the procedure of

Grimshaw [21] can be used.

In a strict GPD case (if theYi follow exactly a GPD), theMaximum

Likelihood Estimate (MLE) has some good convergence properties

in comparison to other estimates (MOM or PWM). It converges in

distribution to a Gaussian distribution when the number of peaks

Nt → ∞ when γ > − 1

2
(with a rate of consistency

√
Nt) and is

superefficient when −1 < γ < − 1

2
with a rate of consistency N

−γ
t .

3.4.2 The Grimshaw’s trick. The trick of the Grimshaw’s proce-

dure is to reduce the two variables optimization problem to a single

variable equation. Let us write ℓ(γ ,σ) = logL(γ ,σ). As we find an

extremum of ℓ, we look for solutions of the system ∇ℓ(γ ,σ) = 0.

Grimshaw has shown that if we get a solution (γ ∗,σ ∗) of this sys-
tem then the variable x∗ = γ ∗/σ ∗ is solution of the scalar equation

u(x)v(x) = 1 where:

u(x) =
1

Nt

Nt∑
i=1

1

1 + xYi
v(x) = 1 +

1

Nt

Nt∑
i=1

log (1 + xYi) .

Moreover, by finding a solution x∗ of this equation, we can

retrieve γ ∗ = v (x∗)−1 and σ ∗ = γ ∗/x∗. Nevertheless, the solutions
of this equation give only possible candidates for the maximum of

ℓ, so we have to get all the roots, to calculate the corresponding

likelihood and keep the best tuple (γ̂ , σ̂) as our final estimates.

We have to pay attention to how this numerical root search is

done. In fact, the values 1+ xYi must be strictly positives. As the Yi

are positive, we must find x∗ on
(
− 1

YM ,+∞
)
where YM = maxYi .

Grimshaw calculates also an upper-bound x∗
max

for this root search:

x∗
max
= 2

Y − Ym

(Ym)2
,

where Ym = minYi and Y is the mean of theYi . Finally, the number

of roots is not known and 0 is always a solution so the implementa-

tion must find all the solutions and pick up those which maximizes

the likelihood.

4 OUR CONTRIBUTION
The extreme value theory, through the POT approach, gives us a

way to estimate zq such that P(X > zq) < q without any strong as-

sumption on the distribution ofX and without any clear knowledge

about its distribution.

In this section we use this result to build a streaming outlier

detector. First we present the initialization step which computes

an threshold zq from n observations X1, . . .Xn . Then, we detail

our two streaming algorithms which update zq with the incom-

ing data and use it as a decision bound. We propose SPOT which

works in stationary cases, and DSPOT which takes into account

a drift component. Finally we give some theoretical and technical

improvements making our bound update fast and sturdy.

4.1 Initialization step
Let us sum up the basic idea of our algorithm. We have n observa-

tions X1, . . .Xn , and we have fixed a risk q. The goal is to compute

a first threshold zq verifying P(X > zq) < q. The figure 3 shows
what we do on this initial batch (calibration). The idea is to set

a high threshold t (e.g. a high empirical quantile practically), re-

trieve the peaks (the excesses over t) and fit a GPD (Generalized

Pareto Distribution) to them. So that we infer the distribution of

the extreme values and we can compute the threshold zq .
This initialization step is summarized in the algorithm 1. The

choice of t will be discussed in 4.3.3. The setYt is the peaks set where
we store the observed excesses over t . The GPD fit is performed

with the Grimshaw trick (we detail our likelihood optimization in

4.3.2) and then we can compute zq with equation 1.

Algorithm 1 POT (Peaks-over-Threshold)

1: procedure POT(X1, . . .Xn ,q)
2: t ← SetInitialThreshold(X1, . . .Xn)
3: Yt ← {Xi − t |Xi > t}
4: γ̂ , σ̂ ← Grimshaw(Yt)
5: zq ← CalcThreshold(q, γ̂ , σ̂ ,n,Nt , t)
6: return zq , t
7: end procedure

4.2 Finding anomalies in a stream
The POT primitive returns a threshold zq which we use to define a

"normality bound" (figure 3).

In our streaming algorithms the POT primitive (algorithm 1) is

used as an initialization step.

The POT primitivemay be seen as a training step but this is partly
wrong because the initial batch X1, . . .Xn is not labeled and is not

considered as a ground truth in our algorithm. The initialization is

more a calibration step. Our streaming anomaly detector uses the

next observations to both detect anomalies and refine the anomaly

threshold zq .

4.2.1 Stationary case. The way how the POT estimate is built

is really stream-ready. As we do not have to store the whole time

series (only the peaks), it requires low memory so we can use it in

a stream. However, the stream must contain values from the same

distribution, so this distribution cannot been time-dependent (what

we call stationary). In case of time-dependency, we will show that

our algorithm can be adapted to drifting cases (see 4.2.2).

The principle of the SPOT algorithm is the following : we want to

detect abnormal events in a stream (Xi)i>0 in a blind way (without

knowledge about the distribution). Firstly, we perform a POT esti-

mate on the n first values (n ∼ 1000) and we get an initial threshold

zq (initialization). Then for all the next observed values we can

flag the events or update the threshold (see figure 3). If a value

exceeds our threshold zq then we consider it as abnormal (we can

retrieve this anomaly in a list A). The anomalies are not taken into

account for the model update. In the other cases, eitherXi is greater
than the initial threshold (peak case) either it is a “common" value

(normal case). In the peak case, we add the excess to the peaks set

and we update the threshold zq .
In this algorithm we perform the maximum number of threshold

updates but it is possible to do it off-line at fixed time interval. Of

course we illustrate the principle only with upper-bound thresholds

4

Algorithm 2 SPOT (Streaming POT)

1: procedure SPOT((Xi)i>0,n,q)
2: A← ∅ ▷ set of the anomalies
3: zq , t ← POT(X1, . . .Xn ,q)
4: k ← n
5: for i > n do
6: if Xi > zq then ▷ anomaly case
7: Add (i,Xi) in A
8: else if Xi > t then ▷ real peak case
9: Yi ← Xi − t
10: Add Yi in Yt
11: Nt ← Nt + 1

12: k ← k + 1

13: γ̂ , σ̂ ← Grimshaw(Yt)
14: zq ← CalcThreshold(q, γ̂ , σ̂ ,k,Nt , t)
15: else ▷ normal case
16: k ← k + 1

17: end if
18: end for
19: end procedure

zq

t

time

FLAG!

X1 Xn
calibration

Xn+1

stream

· · ·

Normal

Peaks

Abnormal

Figure 3: Anomaly detection overview

but the method is the same for lower-bound ones and we can even

combine both (performances will be presented in 5.4).

4.2.2 Drifting case. SPOT assumes that the distribution of theXi
does not change over time but it might be restrictive. For instance,

a mid-term seasonality cannot be taken into account, making lo-

cal peaks undetectable. In this section we overcome this issue by

modeling an average local behavior and applying SPOT on relative

gaps.

We propose Drift SPOT (DSPOT) which makes SPOT run not

on the absolute values Xi but on the relative ones. We use the

variable change X ′i = Xi −Mi whereMi models the local behavior

at time i (see figure 4). In our implementation we used a moving

average Mi = (1/d) ·
∑d
k=1

X ∗i−k with X ∗i−1
, . . .X ∗i−d the last d

"normal" observations (so d is a window parameter). In this new

context we assume that the local variations X ′i come from a same

stationary distribution (the hypothesis assumed for Xi in SPOT is

now assumed for X ′i).
This variant uses an additional parameterd , which can be viewed

as a window size. The distinctive features of this window (noted

W ∗) are the following: it might be non continuous and it does not

contain abnormal values.

FLAG! zq

t

M

time

Xi Mi X j Mj

Figure 4: Anomaly detection with drift

Algorithm 3 DSPOT (Streaming POT with drift)

1: procedure DSPOT((Xi)i>0,n,d,q)
2: A← ∅ ▷ set of the anomalies
3: W ∗ ← [X1, . . .Xd] ▷ Last d normal values

4: Md+1
=W ∗ ▷ Local model with depth d

5: for i ∈ [[d + 1,d + n]] do
6: X ′i = Xi −Mi
7: W ∗ ← [Xi−d+1

, . . .Xi]

8: Mi+1 ←W ∗

9: end for
10: zq , t ← POT(X ′d+1

, . . .X ′d+n ,q)
11: k ← n
12: for i > d + n do
13: X ′i = Xi −Mi ▷ variable change
14: if X ′i > zq then ▷ anomaly case
15: Add (i,Xi) in A
16: Mi+1 ← Mi ▷ no update
17: else if X ′i > t then ▷ real peak case
18: Yi ← X ′i − t
19: Add Yi in Yt
20: Nt ← Nt + 1

21: k ← k + 1

22: γ̂ , σ̂ ← Grimshaw(Yt)
23: zq ← CalcThreshold(q, γ̂ , σ̂ ,k,Nt , t)
24: W ∗ ←W ∗[1 :] ∪ Xi ▷ window slide
25: Mi+1 ←W ∗ ▷ update of the local model
26: else ▷ normal case
27: k ← k + 1

28: W ∗ ←W ∗[1 :] ∪ Xi ▷ window slide
29: Mi+1 ←W ∗ ▷ update of the local model
30: end if
31: end for
32: end procedure

The algorithm 3 shows ourmethod to capture the local model and

perform SPOT thresholding on local variations. It contains some

additional steps so as to compute variable changes. For these stages,

we principally use a sliding windows over normal observationsW ∗

(lines 3, 7, 24 and 28) in order to calculate a local normal behavior

Mi (lines 4, 8, 25 and 29) through averaging. We logically update

the local behavior only in normal or peak cases (lines 25 and 29).

We can retrieve sequentially the “real" extreme quantiles by

adding Mi to the calculated zq . Such a choice to model the local

5

behavior is a very efficient way to adapt SPOT to drifting contexts.

As mentioned in the previous paragraph, DSPOT can be adapted to

compute upper and lower bounds.

4.3 Numerical optimization
The streaming context requests fast and resilient algorithms. In this

part, we optimize the GPD fit by reducing the search of optimal pa-

rameters and making it more robust to common numerical stability

problems (divergence, absurd values). The proposition 4.1 gives a

general result for EVT, improving the Grimshaw’s trick. In 4.3.2,

we detail how we perform the likelihood optimization and finally

we give some details about the initial threshold t .

4.3.1 Reduction of the optimal parameters search. As we have
seen in section 3.4.2, the Grimshaw’s method for the maximum

likelihood estimation requires a numerical root search in a bounded

interval. In this paragraph we show that we can reduce this interval.

Gathering the following result and the previous bounds (sec-

tion 3.4.2), the possible solutions of u(x)v(x) = 1 stand in the two

intervals (
−

1

YM
, 0

]
and

[
2

Y − Ym

YYm
, 2

Y − Ym

(Ym)2

]
.

Proposition 4.1. If x∗ is a solution of u(x)v(x) = 1,

x∗ ≤ 0 or x∗ ≥ 2

Y − Ym

YYm
.

Proof. Since ∀x > −1, log(1 + x) ≥ 2x
2+x = 2 − 4

2+x ,

v(x) ≥ 1 +
1

Nt

Nt∑
i=1

(
2 −

4

2 + xYi

)
≥ 3 −

4

2 + xYm
.

Then applying Jensen’s inequality on the convex function x 7→ 1

1+x
we get :

u(x) ≥
1

1 + xY
,

so that

u(x)v(x) ≥

(
3 −

4

2 + xYm

) (
1

1 + xY

)
.

If x∗ is a solution of the equation u(x)v(x) = 1, we must have

1 ≥

(
3 −

4

2 + x∗Ym

) (
1

1 + x∗Y

)
.

Simplifying this inequality, we get

x∗
(
x∗YmY − 2

(
Y − Ym

))
≥ 0.

And a simple sign study gives the result. □

4.3.2 How can we maximize the likelihood function? Finding the

maximum of the likelihood boils down to apply a root search. But

this is not a trivial task: we do not know the number of roots and

all the roots are potential candidates to maximize this function.

In [21], Grimshaw gives an analytic-based routine using root-

finding algorithm is given however the needed condition f (a)f (b) <
0 is not emphasized leading to uncertain results. For this reason we

decide to use another method to find these roots.

In our implementation, we set a very small ϵ > 0 (∼ 10
−8
) and

we look for the roots of the functionw : x 7→ u(x)v(x) − 1 in both

intervals [
−

1

YM
+ ϵ,−ϵ

]
and

[
2

Y − Ym

YYm
, 2

Y − Ym

(Ym)2

]
.

The real ϵ is used to avoid both cases x = 1

YM (where w is not

defined) and x = 0 (which is always a solution).

Many methods exist to find multiple roots of polynomials (such

as Sturm method) but not for the general case of scalar functions.

Furthermore, finding a root needs a sign change which may be dif-

ficult to detect. Thus we have reduced our root search to a function

minimization which requires less assumptions.

To find the zeros ofw we solve numerically the following opti-

mization problem in both intervals (that we note I):

min

x1, ..xk ∈I

k∑
i=1

w(xk)
2.

The minimization can be done with a classical algorithm (e.g. L-

BFGS-B [12]) starting with k points x0

1
, ...x0

k (k ≃ 10) distributed

over I . We use this procedure for three reasons: the optimal con-

figuration (x∗
1
, ..x∗k) is likely to contain the zeros ofw in I , we can

retrieve several roots (according to k) and optimizing procedures

do not require sign change between the bounds.

We perform this optimization in both intervals so we get a list of

candidates tomaximize the likelihood (the case x = 0 is also treated).

We keep the best of them and we retrieve the best parameters for

the GPD fit.

4.3.3 Initial threshold. We have detailed the Grimshaw proce-

dure (3.4.2 and 4.3) and how the final threshold zq is calculated

(equation 1) but we have not dealt with the initial threshold t . In
practice, its value is not paramount except that it must be “high"

enough. The higher is t , the more relevant will be the GPD fit (low

bias). However, if t is too high, the peaks set Yt would be little filled
in, so the model would be more variable (high variance). The only

important condition is to ensure that t is lower than zq , meaning

that the probability associated to t must be lower than 1 − q. In
practice we set t to a high empirical quantile (98%).

A method based on themean excess plot [10] could be used to set
t in a smarter way but it is less stable and likely to output absurd

values.

5 EXPERIMENTS
In this section we apply both our algorithms SPOT and DSPOT on

several contexts. First, we compare the computed threshold zq with

the theoretical ones through experiments on synthetic data. Then

we use real world datasets from several fields (network, physics,

finance) to highlight the properties of our algorithms.

Finally we present the performance of our implementation.

The real world datasets used in these experiments are all avail-

able on the Internet and we do our utmost to detail experimental

protocols making them totally reproducible. Our python3 imple-

mentation is available at [1].

6

5.1 (D)SPOT reliability
In this section, we compare our computed threshold zq to the theo-

retical one. In other words, we want to check if zq is the desired

threshold (which verifies P(X > zq) < q). In the same time we

evaluate the impact of the number of observations n in the initial

batch.

In the following experiments we set q = 10
−3

and we run SPOT

on Gaussian white noises of 15000 values, i.e. 15000 independent

values from a standard normal distribution (µ = 0,σ 2 = 1). For

different values of n (300, 500, 1000, 2000 and 5000), we run SPOT

k = 100 times and we retrieve the averaged error made in compari-

son to the theoretical threshold:

error rate =

�����zSPOT − zth

zth

����� .
Here, zth

is the quantile of the standard normal distribution at level

1 − q, so zth ≃ 3.09. The figure 5 presents the results.

First of all the curves show that, for all initial batch sizes n,
the error is low and decreases when the number of observations

increases. It means that the computed threshold zSPOT
is close to

the theoretical one and tends to it.

Secondly, we have to notice that the error curves all converge

to the same value regardless of n. Therefore, n is not a paramount

parameter. In our experiments, we just have to ensure that n is not

too small, otherwise the initialization step is likely to fail because of

a lack of peaks to perform the GPD fit. Generally, we use n ≃ 1000.

0 2000 4000 6000 8000 10000 12000 14000
Number of observations

0

2

4

6

8

10

12

14

16

Er
ro

r r
at

e (
%)

300
500
1000
2000
5000

Figure 5: Error rate with the number of observations accord-
ing to the batch size n

5.2 Finding anomalies with SPOT
5.2.1 Intrusion detection example. SPOT computes a robust thresh-

old estimation (zq): the more data we monitor, the more accurate

the estimation is. So having a lot of data from the same and un-

known distribution, SPOT can gradually adapt this threshold in

order to detect anomalies. Cyber-security is a typical field where

such configurations appear.

To test our algorithm we use real data from the MAWI repository

which contains daily network captures (15 minutes a day stored in

a .pcap file). In these captures, MAWIlab [19] finds anomalies and

labels them with the taxonomy proposed by Mazel et al. [25]. The

anomalies are referred through detailed patterns. To be close to real

monitoring systems we converted raw .pcap files into NetFlow

format, which aggregates packets and retrieves meta-data only, and

is commonly used to measure network activity. Then we labeled

the flows according to the patterns given by the MAWIlab. In this

experiment we use the two captures from the 17/08/2012 and the

18/08/2012.

Classical attacks are network scans where many SYN packets

are sent in order to find open and potentially vulnerable ports on

several machines. A relevant feature to detect such attack is the

ratio of SYN packets in a given time window [17]. From our NetFlow

records we compute this feature on successive 50 ms time windows

and we try to find extreme events. To initialize SPOT we use the last

1000 values of the 17/08 record and we let the algorithm working

on the 18/08 capture.

-50
.0 0.0 50
.0

10
0.0

15
0.0

20
0.0

25
0.0

30
0.0

35
0.0

40
0.0

45
0.0

50
0.0

55
0.0

60
0.0

65
0.0

70
0.0

75
0.0

80
0.0

85
0.0

time (s)

0.0

0.2

0.4

0.6

0.8

1.0

ra
tio

 o
f S

YN
 p

ac
ke

ts
in

 5
0

m
s t

im
e

w
in

do
w

Figure 6: SYN flood detection at level q = 10
−4

The figure 6 shows the alerts triggered by SPOT (red circles). We

recall that each point represents a 50 ms window gathering several

flows (possibly benign and malicious). The computed threshold

(dashed line) seems nearly constant but this behavior is due to the

stability of the measure we monitor (SPOT has quickly inferred the

behavior of the feature). By flagging all the flows in the triggered

windows, we get a true positive rate equal to 86% with less than 4%

of false positives.

5.2.2 The parameter q as a false-positive regulator. In the pre-

vious section we noticed that the size of the initial batch n is not

an important parameter insofar as it does not affect the overall

behavior of SPOT. Here, we study the impact of the main parameter

q on the MAWI dataset.

On the figure 7, the ROC curve shows the effect of q on the False

Positive rate (FPr). Values of q between 10
−3

and 10
−5

allow to have

a high TPr while keeping a low FPr: this leaves some room for error

when setting q.

5.3 Finding anomalies with DSPOT
5.3.1 Measure of the magnetic field. To show the wide variety

of fields on which we can use DSPOT, we apply our algorithm on

astrophysics measures from the SPIDR (Space Physics Interactive

Data Resource) [4]. SPIDR is an online platform which stores and

7

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
FPr (%)

0.0

20.0

40.0

60.0

80.0

100.0

TP
r (

%)

9. 10 − 6

1. 10 − 5 5. 10 − 5

8. 10 − 5

8. 10 − 6

6. 10 − 3

Figure 7: ROC curves onMAWI dataset (themarkers give the
corresponding value of q)

manages historical space physics data for integration with environ-

ment models and space weather forecasts.

Particularly we use a dataset available on Comp-Engine Time

Series [3] which gathers some physical measures taken by the ACE

satellite between 1/1/1995 and 1/6/1995. In the figure 8 we monitor

a component of the magnetic field (in nT) during several minutes.

This time series is very noisy and contains different complex

behaviors. We calibrate DSPOT with the n = 2000 first values and

we run on the 15801 others with q = 10
−3

and d = 450. The results

are depicted on the figure 8.

0 2000 4000 6000 8000 10000 12000 14000 16000
Minutes

15

10

5

0

5

10

15

M
ag

ne
tic

 f
el

d
(n

T)

Calibration

Figure 8: DSPOT run with q = 10
−3,d = 450

At the first glance, the bounds are following the signal and some

alarms are triggered by high peaks. After 9000 minutes, the upper

bound seems higher than expected.

To understand why, let us divide the signal into two parts: before

and after 8000 minutes. Before 8000, we can observe that “peaks"

lean upwards the trend although the opposite phenomenon appears

after 8000. During these 8000 first minutes, DSPOT learns that

peaks may lean upwards the trend and it keeps this information in

memory. Hence after 8000 minutes, the upper bound stays high in

order to accommodate for possible peaks above the trend. DSPOT

has this behavior because it keeps a global memory of all peaks

encountered. If it was not desired, un easy modification is to keep

only the last k peaks, for a fixed k .

5.3.2 Stock prices. On Thursday the 9th of February 2017, an ex-

plosion happened at Flamanville nuclear plant, in northern France.

This power plant is managed by EDF, a French electricity provider.

The incident was not in the nuclear zone and did not hurt people

[5]. This incident was officially declared at 11:00 a.m. making the

EDF stock price fall down. This recent event encouraged us to test

DSPOT on EDF stock prices.

Obviously, retrieving financial data with high resolution is not

within ours grasp. However, some websites like Google Finance [2]

propose intraday financial data with a record per minute. Google

Finance keeps these records during 15 days, so we retrieve the

records from the 6th to the 8th of February 2017 for calibration

(1062 values) and ran DSPOT on the explosion day (379 values). .

On figure 9, we notice that DSPOT follows the average behavior

and flags the drop around 11:00 a.m. This may help a trading system

to quickly take actions or warn experts.

09:
01:

00

09:
41:

00

10:
33:

00

11:
31:

00

12:
18:

00

13:
24:

00

14:
42:

00

15:
33:

00

16:
20:

00

17:
13:

00

Time

9.0

9.1

9.2

9.3

9.4

ED
F

st
oc

k
pr

ic
e

(€
)

Figure 9: DSPOT run with q = 10
−3,d = 10

5.4 Performances
Herewe give some details about the time andmemory performances

of our python3 implementation. All these experiments have been

made on a laptop with an Intel i5-5300U CPU @ 2.30GHz (4 cores)

and 8 GB RAM.

Both algorithms, SPOT and DSPOT require a fixed memory size

for all the variables except for the peak set Yt which may grow with

the number of observations. To measure the memory performance

of our algorithm we report the number of peaks we stored.

To test the performances of our algorithms we run each of them

on 100 Gaussian white noises of 15000 values (like the experiment in

section 5.1). At every run we measure the averaged time to perform

one iteration and the ratio of stored peaks, i.e. the number of peaks

over the number of observations.

For these experiments we set q = 10
−3

and we use n = 1000

values for the initial batch. We record these measures in four con-

texts: SPOT, SPOT both sides (bi-SPOT), DSPOT and DSPOT both

sides (bi-DSPOT). The “both sides" runs take into account upper

and lower thresholds updates. In drifting cases, we add a drift to

the Gaussian white noise and we use a depth d = 50.

8

The table 2 presents the averaged time to perform one iteration

(denoted T, measured in µs) and the ratio number of peaks over

number of observations at the end of the run (denoted M, in %) in

mean, best and worst cases.

Method

Worst Mean Best

T M T M T M

SPOT 959 2,70 351 1,90 141 1,40

DSPOT 883 3,49 391 2,02 197 1,07

bi-SPOT 1733 5,58 772 4,18 373 2,79

bi-DSPOT 1053 5,79 591 4,02 272 2,74

Table 2: Time (T, in µs) and Memory (M, in %) performances

Our algorithm stores a little ratio of all the stream (few percents).

Logically we store about twice more when we compute upper and

lower thresholds. Even if the growth speed of the peaks sets size is

low it could be an hindrance for a long term monitoring. However,

the size of the peaks set could be upper-bounded (with a high bound)

making it work like a wide sliding window (very old peaks would

be dropped) without loss of accuracy.

Finally the time performances of our algorithms show that our

implementation is able to work on streams with more than 1000

values a second.

6 CONCLUSION
This paper has presented a novel approach to detect outliers in high

throughput numerical time series. The key points of our approach

is that it does not assume the data distribution, and it does not

require manually set thresholds. It adapts on multiple and complex

contexts, learning how the interest measure behaves. It achieves

these results by using the Extreme Values Theory (EVT). To the

best of our knowledge, it is the first time EVT has been used to

detect outliers in streaming data.

There are two kinds of perspectives. From the theoretical side,

in this paper we only exploited a small part of EVT, we would

like to extend this work to the multivariate case and to non-iid

observations.

From the practical side, one of the immediate application of our

approach is automatic thresholding: it can provide thresholds with

strong statistical guarantees that can adapt to the evolution of a

data stream. We would like to explore the use of our approach as a

building block into more complex systems that require thresholding.

Also the EVT on multivariate cases could address our problem in

more general contexts without independence condition.

REFERENCES
[1] https://github.com/Amossys-team/SPOT. (????).

[2] Google Finance. https://www.google.com/finance. (????).

[3] Magnetic field time series. http://www.comp-engine.org/timeseries/time-series_

data/data-17481/. (????).

[4] Space Physics Interactive Data Resource. http://spidr.ionosonde.net/spidr/home.

do. (????).

[5] http://www.webcitation.org/6oAxqoFkf. (????).

[6] Deepak Agarwal. 2005. An empirical bayes approach to detect anomalies in

dynamic multidimensional arrays. In ICDM.

[7] Fabrizio Angiulli, Stefano Basta, and Clara Pizzuti. 2006. Distance-based detection

and prediction of outliers. IEEE transactions on knowledge and data engineering
(2006).

[8] Fabrizio Angiulli and Fabio Fassetti. 2007. Detecting distance-based outliers

in streams of data. In Proceedings of the 16th ACM conference on Conference on
information and knowledge management.

[9] August A Balkema and Laurens De Haan. 1974. Residual life time at great age.

The Annals of probability (1974).

[10] Jan Beirlant, Yuri Goegebeur, Johan Segers, and Jozef Teugels. 2006. Statistics of
extremes: theory and applications. John Wiley & Sons.

[11] Markus M Breunig, Hans-Peter Kriegel, Raymond T Ng, and Jörg Sander. 2000.

LOF: identifying density-based local outliers. In ACM sigmod record, Vol. 29. ACM,

93–104.

[12] Richard H Byrd, Peihuang Lu, Jorge Nocedal, and Ciyou Zhu. 1995. A limited

memory algorithm for bound constrained optimization. SIAM J. on Scientific
Computing (1995).

[13] Varun Chandola, Arindam Banerjee, and Vipin Kumar. 2009. Anomaly detection:

A survey. ACM computing surveys (2009).
[14] Lian Duan, Lida Xu, Ying Liu, and Jun Lee. 2009. Cluster-based outlier detection.

Annals of Operations Research 168, 1 (2009), 151–168.

[15] Manzoor Elahi, Kun Li, Wasif Nisar, Xinjie Lv, and Hongan Wang. 2008. Efficient

clustering-based outlier detection algorithm for dynamic data stream. In FSKD’08.
[16] Eleazar Eskin. 2000. Anomaly detection over noisy data using learned probability

distributions. In ICML.
[17] Guilherme Fernandes and Philippe Owezarski. 2009. Automated classification of

network traffic anomalies. In ICSPCS.
[18] Ronald Aylmer Fisher and Leonard Henry Caleb Tippett. 1928. Limiting forms

of the frequency distribution of the largest or smallest member of a sample. In

Mathematical Proceedings of the Cambridge Philosophical Society.
[19] Romain Fontugne, Pierre Borgnat, Patrice Abry, and Kensuke Fukuda. 2010.

MAWILab: Combining Diverse Anomaly Detectors for Automated Anomaly

Labeling and Performance Benchmarking. In ACM CoNEXT ’10.
[20] Boris Gnedenko. 1943. Sur la distribution limite du terme maximum d’une serie

aleatoire. Annals of mathematics (1943), 423–453.
[21] Scott D. Grimshaw. 1993. Computing Maximum Likelihood Esti-

mates for the Generalized Pareto Distribution. Technometrics 35,

2 (1993), 185–191. https://doi.org/10.1080/00401706.1993.10485040

arXiv:http://amstat.tandfonline.com/doi/pdf/10.1080/00401706.1993.10485040

[22] Bruce M Hill. 1975. A simple general approach to inference about the tail of a

distribution. The annals of statistics 3, 5 (1975), 1163–1174.
[23] Ludmila I Kuncheva. 2008. Classifier ensembles for detecting concept change in

streaming data: Overview and perspectives. In 2nd Workshop SUEMA.
[24] Rikard Laxhammar and Göran Falkman. 2014. Online learning and sequential

anomaly detection in trajectories. IEEE transactions on pattern analysis and
machine intelligence 36, 6 (2014), 1158–1173.

[25] Johan Mazel, Romain Fontugne, and Kensuke Fukuda. 2014. A taxonomy of

anomalies in backbone network traffic. In IWCMC.
[26] EWTNgai, Yong Hu, YHWong, Yijun Chen, and Xin Sun. 2011. The application of

data mining techniques in financial fraud detection: A classification framework

and an academic review of literature. Decision Support Systems 50, 3 (2011),

559–569.

[27] James Pickands III. 1975. Statistical inference using extreme order statistics. the
Annals of Statistics (1975).

[28] Md Shiblee Sadik and Le Gruenwald. 2010. DBOD-DS: Distance based outlier

detection for data streams. In International Conference on Database and Expert
Systems Applications. Springer, 122–136.

[29] Shiblee Sadik and Le Gruenwald. 2014. Research issues in outlier detection for

data streams. ACM SIGKDD Explorations Newsletter 15, 1 (2014), 33–40.
[30] John E Seem. 2007. Using intelligent data analysis to detect abnormal energy

consumption in buildings. Energy and buildings 39, 1 (2007), 52–58.
[31] Durga Toshniwal. 2012. A framework for outlier detection in evolving data

streams by weighting attributes in clustering. Procedia Technology 6 (2012),

214–222.

[32] Haining Wang, Danlu Zhang, and Kang G Shin. 2002. Detecting SYN flooding

attacks. In INFOCOM.

9

https://www.google.com/finance
http://www.comp-engine.org/timeseries/time-series_data/data-17481/
http://www.comp-engine.org/timeseries/time-series_data/data-17481/
http://spidr.ionosonde.net/spidr/home.do
http://spidr.ionosonde.net/spidr/home.do
http://www.webcitation.org/6oAxqoFkf
https://doi.org/10.1080/00401706.1993.10485040
http://arxiv.org/abs/http://amstat.tandfonline.com/doi/pdf/10.1080/00401706.1993.10485040

	Abstract
	1 Introduction
	2 Related work
	3 Background
	3.1 Extreme value distributions
	3.2 Power of EVT
	3.3 Peaks-Over-Threshold (POT) approach
	3.4 Maximum likelihood estimation

	4 Our contribution
	4.1 Initialization step
	4.2 Finding anomalies in a stream
	4.3 Numerical optimization

	5 Experiments
	5.1 (D)SPOT reliability
	5.2 Finding anomalies with SPOT
	5.3 Finding anomalies with DSPOT
	5.4 Performances

	6 Conclusion
	References

